FULLY WORKED SOLUTIONS

Context 5: Physics in space

Chapter 13: Exploring the final frontier

Chapter questions

1.

$$\left(\frac{T^2}{R_{\text{av}}^3}\right)_{\text{Venus}} = \left(\frac{T^2}{R_{\text{av}}^3}\right)_{\text{Earth}}$$

$$\left(\frac{0.615^2}{R_{\text{av Venus}}^3}\right) = \left(\frac{1^2}{1^3}\right) = 1$$

$$R_{\text{av Venus}}^3 = \frac{0.615^2}{1}$$

$$R_{\text{av Venus}} = \sqrt[3]{0.615^2}$$

$$= 0.723 \text{ AU}$$

2. Using the same process, the completed table is as follows.

	Length of year	Average orbital radius
Planet	(Earth years)	(AU)
Mercury	0.241	0.387
Jupiter	11.86	5.20
Saturn	29.46	9.54
Uranus	84.01	19.18
Neptune	164.79	30.06

3.

$$F = G \frac{m_1 m_G}{d^2}$$

$$= \frac{(6.67 \times 10^{-11})(1.90 \times 10^{27})(1.48 \times 10^{23})}{(1.07 \times 10^9)^2}$$

$$= 1.64 \times 10^{22} \text{ N}$$

4. (a)

$$F = G \frac{m_G m_A}{d^2}$$

$$= \frac{(6.67 \times 10^{-11})(1.48 \times 10^{23})(0.250)}{(2.631 \times 10^6)^2}$$

$$= 0.36 \text{ N}$$

(b)

$$W = mg \qquad \therefore g = \frac{W}{m}$$
$$= \frac{0.36}{0.25}$$
$$= 1.4 \text{ m s}^{-3}$$

5. The mass of Venus is 4.869×10^{24} kg and its radius is 6052 km.

$$g = G \frac{\text{mass}_{\text{Venus}}}{(\text{radius}_{\text{Venus}} + \text{altitude})^2}$$
$$= \frac{(6.67 \times 10^{-11})(4.869 \times 10^{24})}{(6.052 \times 10^6 + 0)^2}$$
$$= 8.87 \text{ m s}^{-2}$$

6. Titan's mass is 1.35×10^{23} kg and its radius is 2575 km. Orbital altitude is 150 km and the astronaut's mass is 75 kg.

$$g = G \frac{\text{mass}_{\text{Titan}}}{(\text{radius}_{\text{Titan}} + \text{altitude})^2}$$

$$= \frac{(6.67 \times 10^{-11})(1.35 \times 10^{23})}{(2.575 \times 10^6 + 1.5 \times 10^5)^2}$$

$$= 1.21 \text{ m s}^{-2}$$

$$W = mg$$

$$= 75 \times 1.21$$

$$= 90.8 \text{ N}$$

7. (a)

Velocity =
$$\frac{\text{circumference}}{\text{period}}$$

= $\frac{2 \pi r}{T}$
= $\frac{2\pi \times 5}{2.5}$
= 12.57 m s⁻¹
Centripetal force, $F_C = \frac{mv^2}{r}$
= $\frac{90 \times 12.57^2}{2.5}$
= 5688 N

(b)

Normal true weight =
$$mg$$

= 90×9.8
= 882 N
Multiple = $\frac{5688}{882}$
= 6.45

In other words this ride exerts an apparent g-force of 6.45. That's quite a ride!

8. Note that 230 km $h^{-1} = \frac{230}{3.6}$ m $s^{-1} = 63.9$ m s^{-1} .

Centripetal acceleration,
$$a_C = \frac{v^2}{r}$$

$$= \frac{63.9^2}{500}$$

$$= 8.16 \text{ m s}^{-2}$$

9. The mass of the Earth is 5.97×10^{24} kg and its radius is 6380 km. Orbital altitude is 250 km.

$$v = \sqrt{\frac{Gm_E}{r}}$$

$$= \sqrt{\frac{(6.67 \times 10^{-11})(5.97 \times 10^{24})}{(6.38 \times 10^6 + 250 \times 10^3)}}$$

$$= 7749 \text{ m s}^{-1}$$

$$= 27899 \text{ km h}^{-1}$$

10. The mass of the Moon is 7.35×10^{22} kg and its radius is 1738 km. Orbital altitude is 110 km.

$$v = \sqrt{\frac{Gm_{Moon}}{r}}$$

$$= \sqrt{\frac{(6.67 \times 10^{-11})(7.35 \times 10^{22})}{(1.738 \times 10^{6} + 110 \times 10^{3})}}$$

$$= 1629 \text{ m s}^{-1}$$

$$= 5864 \text{ km h}^{-1}$$

$$v = \sqrt{\frac{Gm_E}{r}}$$

$$= \sqrt{\frac{(6.67 \times 10^{-11})(5.97 \times 10^{24})}{(6.38 \times 10^6 + 20000 \times 10^3)}}$$

$$= 3885 \text{ m s}^{-1}$$

$$= 13987 \text{ km h}^{-1}$$
Time taken for 1 orbit = $\frac{\text{Length of an orbit}}{\text{Orbital velocity}}$

$$= \frac{2 \pi r}{v}$$

$$= \frac{2 \pi \times (6.38 \times 10^6 + 20000 \times 10^3)}{3885}$$

$$= 42664 \text{ seconds}$$

$$= 11 \text{ hours } 51 \text{ minutes } 4 \text{ seconds}$$

12. Determine initial acceleration as follows:

$$a = \frac{\sum F}{m} = \frac{(T - mg)}{m}$$
$$= \frac{3.95 - (0.0885 \times 9.8)}{0.0885}$$
$$= 34.8 \text{ m s}^{-2}$$

Initial g-force can be determined as follows:

g - force =
$$\frac{g + a}{9.8}$$

= $\frac{9.8 + 34.8}{9.8 \times 0.0885}$
= 4.55

Determine final acceleration as follows:

final mass =
$$88.5 - 10.5 = 78.0 g$$

Hence,
$$a = \frac{\sum F}{m} = \frac{(T - mg)}{m}$$

= $\frac{3.95 - (0.078 \times 9.8)}{0.078}$
= 40.8 m s^{-2}

Final g-force can be determined as follows:

g - force =
$$\frac{g + a}{9.8}$$

= $\frac{9.8 + 40.8}{9.8}$
= 5.16

13. (a)

$$t_{v} = \frac{t_{o}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$= \frac{1}{\sqrt{1 - \left(\frac{0.1c}{c}\right)^{2}}}$$

$$= 1.005 \text{ seconds}$$

(b)

$$t_{v} = \frac{t_{o}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$= \frac{1}{\sqrt{1 - \left(\frac{0.9c}{c}\right)^{2}}}$$

$$= 2.294 \text{ seconds}$$

(c)

$$t_{v} = \frac{t_{o}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$= \frac{1}{\sqrt{1 - \left(\frac{0.99c}{c}\right)^{2}}}$$

$$= 7.089 \text{ seconds}$$

14. (a)

$$L_{v} = L_{o} \sqrt{1 - \frac{v^{2}}{c^{2}}}$$
$$= 20 \sqrt{1 - (0.1)^{2}}$$
$$= 19.90 \text{ m}$$

(b)

$$L_{v} = L_{o} \sqrt{1 - \frac{v^{2}}{c^{2}}}$$
$$= 20 \sqrt{1 - (0.9)^{2}}$$
$$= 8.72 \text{ m}$$

(c)

$$L_{v} = L_{o} \sqrt{1 - \frac{v^{2}}{c^{2}}}$$
$$= 20 \sqrt{1 - (0.99)^{2}}$$
$$= 2.82 \text{ m}$$

15. (a)

$$m_{v} = \frac{m_{o}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$= \frac{100.0}{\sqrt{1 - \frac{(0.1c)^{2}}{c^{2}}}}$$

$$= 100.5 \text{ kg}$$

(b)

$$m_{v} = \frac{m_{o}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$= \frac{100.0}{\sqrt{1 - \frac{(0.9c)^{2}}{c^{2}}}}$$

$$= 229.4 \text{ kg}$$

(c)

$$m_{v} = \frac{m_{o}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$= \frac{100.0}{\sqrt{1 - \frac{(0.99c)^{2}}{c^{2}}}}$$

$$= 708.9 \text{ kg}$$

16. The answers to the previous question show that as velocity increases towards c, mass also increases. Further, once velocity exceeds 0.9c, mass begins to increase significantly. Once past 0.99c, mass increases very sharply. Before ever reaching c, mass will become infinite, preventing an object from actually reaching the speed of light.

Review questions

14. (a)
$$F = G \frac{m_1 m_C}{r^2}$$
$$= \frac{(6.67 \times 10^{-11})(1.9 \times 10^{27})(10 \times 10^{22})}{(1.88 \times 10^9)^2}$$
$$= 3.59 \times 10^{21} \text{ N}$$

(b)
$$F = G \frac{m_1 m_S}{r^2}$$

$$= \frac{(6.67 \times 10^{-11})(1.9 \times 10^{27})(1.99 \times 10^{30})}{(7.78 \times 10^{11})^2}$$

$$= 4.17 \times 10^{23} \text{ N}$$

15.
$$F = G \frac{m_b m_p}{r^2}$$
$$= \frac{(6.67 \times 10^{-11})(1)(0.05)}{(0.15)^2}$$
$$= 1.48 \times 10^{-10} \,\mathrm{N}$$

16. The first calculation is performed as an example. The others follow the same method.

$$g = G \frac{m_{\text{Mercury}}}{r_{\text{Mercury}}^2}$$
$$= \frac{(6.67 \times 10^{-11})(3.3 \times 10^{23})}{(2.44 \times 10^6)^2}$$
$$\approx 3.7 \text{ m s}^{-2}$$

				Weight of 80
			g on surface	kg person
Body	Mass (kg)	Radius (km)	$(\mathbf{m} \ \mathbf{s}^{-2})$	there
Mercury	3.3×10^{23}	2440	3.7	323
Venus	4.9×10^{24}	6050	8.9	714
Io	9×10^{22}	1820	1.8	145
Callisto	1.1×10^{23}	2400	1.3	93

17. (a)

$$a = \frac{T - mg}{m}$$

$$= \frac{6.1 - (0.0873 \times 9.8)}{0.0873}$$

$$= 60 \text{ m s}^{-2}$$

g - force =
$$\frac{T}{9.8m}$$

= $\frac{4.15}{9.8 \times 0.0873}$
= 7.0

(b) Final mass = 87.3 - 10.5 = 76.8 g.

$$a = \frac{T - mg}{m}$$

$$= \frac{6.1 - (0.0768 \times 9.8)}{0.0768}$$

$$= 69.6 \text{ m s}^{-2}$$

g - force =
$$\frac{T}{9.8m}$$

= $\frac{6.1}{9.8 \times 0.0768}$
= 8.1

$$F = \frac{mv^2}{r}$$
$$= \frac{0.4 \times 12.5^2}{2}$$
$$= 31.25 \text{ N}$$

$$a = \frac{v^2}{r}$$
$$= \frac{12.5^2}{2}$$
$$= 78.1 \text{ N}$$

19.

		Time taken for	Time taken for
Planet	Distance (km)	light wave	spacecraft
Mercury	57.9 million	3.2 minutes	24.1 days
Venus	106.2 million	5.9 minutes	44.3 days
Earth	149.6 million	8.3 minutes	62.3 days
Mars	227.9 million	12.7 minutes	95 days
Jupiter	778.4 million	43.2 minutes	324 days
Saturn	1 423.6 million	79 minutes	593 days
Uranus	2 867.0 million	159 minutes	1195 days

Neptune	4 488.4 million	249 minutes	1870 days
Pluto	5 909.6 million	328 minutes	2462 days

20. (a)
$$v = \frac{s}{t} = \frac{4 \times 10^{16} \text{ m}}{1.26 \times 10^{9} \text{ s}} = 3.17 \times 10^{7} \text{ m s}^{-1}$$

(b) fraction =
$$\frac{3.17 \times 10^7}{3 \times 10^8} = 0.105 \approx 10\%$$

21.
$$v = 3660 \text{ km h}^{-1} = 3.39 \times 10^{-6} \text{c}$$

Observed diameter =
$$3480\sqrt{1 - (3.39 \times 10^{-6})^2}$$

= 3479.99999998 km

$$t_{v} = \frac{t_{o}}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}$$

$$16 \,\mu s = \frac{2.2 \,\mu s}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}$$

$$\therefore v = 0.99 \,c$$

- 23. <Insert figure 13A.6>
- 24. (a)

$$a = \frac{T - mg}{m}$$

$$= \frac{400\ 000 - (32\ 000 \times 9.8)}{32\ 000}$$

$$= 2.7\ \text{m s}^{-2}$$

g - force =
$$\frac{T}{9.8m}$$

= $\frac{400\ 000}{9.8 \times 32\ 000}$
= 1.28

(b) Final mass = $32\ 000 \times 0.15 = 4\ 800 \text{ kg}$

$$a = \frac{T - mg}{m}$$

$$= \frac{400\ 000}{4\ 800}$$

$$= 83.3\ \text{m s}^{-2}$$

g - force =
$$\frac{T}{9.8m}$$

= $\frac{400\ 000}{9.8 \times 4\ 800}$
= 8.5

25. (a)

$$v = \sqrt{\frac{Gm_E}{r}}$$

$$= \frac{(6.67 \times 10^{-11})(5.97 \times 10^{24})}{(6380 + 8.8) \times 10^3}$$

$$= 7.895 \text{ m s}^{-1} = 28.421 \text{ km h}^{-1}$$

(b)

$$T = \frac{2\pi r}{v}$$

$$= \frac{2\pi (6388.8 \times 10^{3})}{7895}$$

$$= 5085 \text{ s}$$

$$\approx 85 \text{ min}$$

(c)

$$F = \frac{mv^2}{r}$$

$$= \frac{0.25 \times 7895^2}{6388.8 \times 10^3}$$

$$= 2.44 \text{ N}$$

26. (a)

$$v = \sqrt{\frac{Gm_E}{r}}$$

$$= \frac{(6.67 \times 10^{-11})(5.97 \times 10^{24})}{(6380 + 180) \times 10^3}$$

$$= 7791 \text{ m s}^{-1} = 28050 \text{ km h}^{-1}$$

(b)

$$T = \frac{2\pi r}{v}$$

$$= \frac{2\pi (6380 + 180) \times 10^{3}}{7791}$$

$$= 5290 \text{ s}$$

$$\approx 88.1 \text{ min}$$

(c)

$$a = \frac{v^2}{r}$$
=\frac{7790^2}{(6380 + 180) \times 10^3}
= 9.25 m s⁻² toward Earth's centre

(d)

$$F = ma$$

= 110000 × 9.25
 $\approx 1020000 N$

27. The calculation for Mars is shown.

$$\frac{r_{\rm E}^{3}}{T_{\rm E}^{2}} = \frac{r_{\rm M}^{3}}{T_{\rm M}^{2}}$$

$$\therefore T_{\rm M}^{2} = \frac{r_{\rm M}^{3} T_{\rm E}^{2}}{r_{\rm E}^{3}}$$

$$= \frac{\left(58.5 \times 10^{8}\right)^{3} \left(1\right)^{2}}{\left(1.50 \times 10^{8}\right)^{3}}$$

$$= 0.059$$

$$\therefore T_{\rm M} = \sqrt{0.059}$$

$$= 0.244 \text{ Earth years}$$

The results for the remainder of the question are shown in this table:

		Time to orbit	
	Radius of orbit	Sun	
Planet	(× 10 ⁶ km)	(in Earth years)	
Mercury	58.5	0.244	
Venus	109	0.619	
Mars	229	1.89	

Jupiter	780	11.9
Saturn	1430	29.4

28. (a)

$$L_{v} = L_{o} \sqrt{1 - \frac{v^{2}}{c^{2}}}$$

$$80 = 120 \sqrt{1 - \frac{v^{2}}{c^{2}}}$$

$$\therefore v = 0.745c$$

(b)

$$L_{v} = L_{o} \sqrt{1 - \frac{v^{2}}{c^{2}}}$$
$$= 80\sqrt{1 - 0.745^{2}}$$
$$= 53.4 \text{ m}$$

Jake thinks 'Oh, no! The plane won't fit!'

- (c) This apparent conflict arises from the relativity of simultaneity. The nose of the plane touching the end wall of the hangar is event A. The door closing behind the plane is event B. Jock, standing on the ground, judges event B to occur before event A, while Jake, in the plane, judges event A to occur first.
- 29. (a)

$$L_{v} = L_{o} \sqrt{1 - \frac{v^{2}}{c^{2}}}$$
$$= 30\sqrt{1 - 0.3^{2}}$$
$$= 28.6 \text{ m}$$

(b)

$$t_{v} = \frac{t_{o}}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}$$
$$= \frac{10}{\sqrt{1 - 0.3^{2}}}$$
$$\therefore v = 10.483 \text{ hr}$$

difference =
$$10.483 - 10$$

= $0.483 \text{ hr} = 28 \text{ min } 59 \text{ s}$

			Time taken
		Contracted	(= contracted
	Distance (ly)	distance (ly)	distance / v)
Pluto	6.1836×10^{-4}	$2.7647 \times 10^{-}$	$2.7675 \times 10^{-5} \mathrm{yr}$
		5	= 15 min
Proxima Centauri	4.2239	0.1889	0.1890 yr
			= 69 days
Sirius	8.6433	0.3864	0.3868 yr
			=141 days
Alpha Crucis	521.95	23.336	23.36 yr
Andromeda	2.53×10^{6}	113 000	Approximately
			113 000 yr